

# Building a Dynamic, Contextual Recommendation System

Ryan Dew

The Wharton School, University of Pennsylvania

WCAI Annual Conference 2019

#### The Team

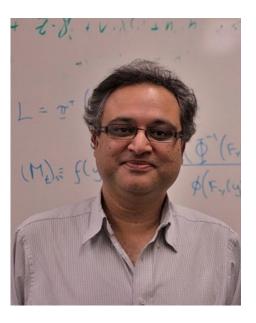


**Ryan Dew** Assistant Professor of Marketing The Wharton School, University of Pennsylvania



#### Yegor Tkachenko

Ph.D. Student Columbia Business School, Columbia University



Asim Ansari William T. Dillard Professor of Marketing Columbia Business School, Columbia University



**The goal:** For any player, understand his/her preferences over all possible games

| User | Date       | Game   |
|------|------------|--------|
| 1    | 2016-06-10 | Game 1 |
| 1    | 2016-06-11 | Game 1 |
| 1    | 2016-06-13 | Game 1 |
| 1    | 2016-06-13 | Game 2 |
|      | ÷          |        |
| 3    | 2016-06-10 | Game 5 |
|      | :          |        |



User 1: Game 1 > 2 > 5 > 3 > ... User 3: Game 5 > 7 > 2 > 3 > ...

**The goal:** For any player, understand his/her preferences over all possible games

#### Key challenges:

• Providing EA useful outputs

| User | Date       | Game   |
|------|------------|--------|
| 1    | 2016-06-10 | Game 1 |
| 1    | 2016-06-11 | Game 1 |
| 1    | 2016-06-13 | Game 1 |
| 1    | 2016-06-13 | Game 2 |
|      | :          |        |
| 3    | 2016-06-10 | Game 5 |
|      | :          |        |

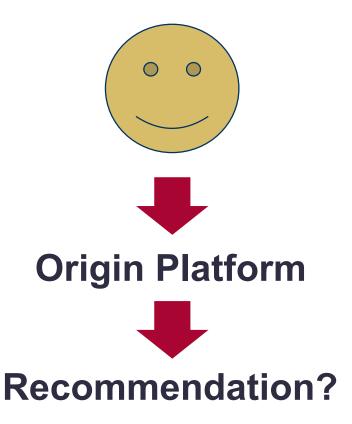


User 1: Game 1 > 2 > 5 > 3 > ... User 3: Game 5 > 7 > 2 > 3 > ...

**The goal:** For any player, understand his/her preferences over all possible games

#### Key challenges:

- Providing EA useful outputs
- The cold start problem

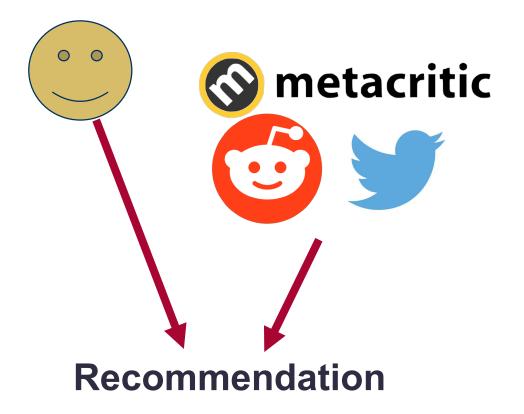




**The goal:** For any player, understand his/her preferences over all possible games

#### Key challenges:

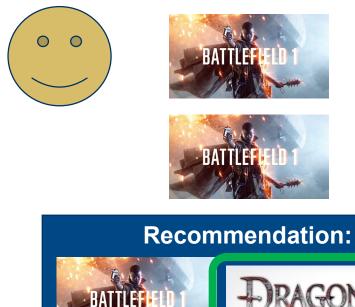
- Providing EA useful outputs
- The cold start problem
- Learning from *diverse data sources*



**The goal:** For any player, understand his/her preferences over all possible games

#### Key challenges:

- Providing EA useful outputs
- The cold start problem
- Learning from *diverse data sources*
- Recommendation *variety*







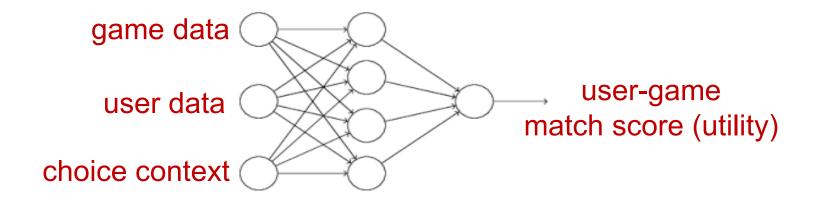


## Our Approach: User-Game Match Scores



#### How do we estimate user U's utility for game X at time t?

We fuse game data, user data, and contextual data via neural networks:





#### Details

- What data goes into this network?
  - User history users are represented as the average of their past 20 games
  - Recency and Frequency of game play
  - Metacritic data numeric ratings, temporal information, and the text as word embeddings
- How do we learn the parameters of the network? Minimize the Bayesian personalized ranking (BPR) loss:  $Loss = E \left[ \frac{\exp(N)}{\exp(N) + \exp(S)} \right] + \text{Regularization}(\alpha)$ Probability of choosing the wrong game

where S is the user's score for the game the user played, and N is the score for a randomly selected other game.



## Key Insights

Evaluating success: mean reciprocal rank

- Model predicts game is rank 1  $\rightarrow$  user plays that game  $\rightarrow$  MRR = 1/1 = 1
- Model predicts game is rank 2  $\rightarrow$  user plays that game  $\rightarrow$  MRR = 1/2 = 0.5

|                         |                      | MRR Test | New Users | New Games |
|-------------------------|----------------------|----------|-----------|-----------|
|                         | Random               | 0.05     | 0.05      | 0.05      |
| Simple Embedding-       | Model1               | 0.34     | 0.36      | 0.02      |
| Only Baselines <b>l</b> | Model2               | 0.30     | 0.20      | 0.02      |
| + [                     | Model3               | 0.60     | 0.64      | 0.04      |
| Aver Correctlisters     | Model3a              | 0.59     | 0.63      | 0.01      |
| Avg. Game History       | Model3b              | 0.33     | 0.35      | 0.02      |
| Embedding               | Model3c              | 0.49     | 0.27      | 0.02      |
| +                       | Model3<br>stochastic | 0.50     | 0.53      | 0.02      |
| Explicit Recency- [     | Model4               | 0.72     | 0.75      | 0.47      |
| Frequency Metrics       | Model4a              | 0.72     | 0.75      | 0.49      |
| 1                       | *Model5              | 0.71     | 0.74      | 0.45      |
| + Metacritic            | *Model6              | 0.71     | 0.74      | 0.47      |

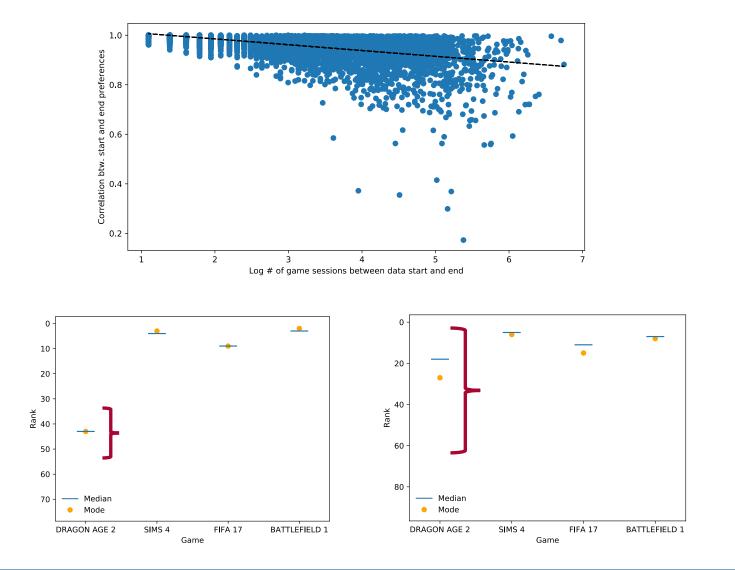
#### What does this mean?

- Past behavior data seems to be the most informative type of data.
- Adding explicit game-specific recencyfrequency really helps
- Context covariates help for handling cold start problems

## Variance and Variety of Recommendations

People's preferences do change over time (i.e. dynamics matter)

Adding stochasticity *may* lead to higher variety of recommendations (Quasi-Bayesian approach to embeddings)



### **Academic Contributions**

• Paper based on this data and findings is a work-in-progress

- Main contribution: dynamic, adaptive, contextual recommendations
  - Leveraging deep learning + BPR for preference modeling
  - Data fusion: mixing wide variety of data sources for single, coherent ranking
  - Stochasticity for explore + exploit learning